Aufgabe 9
9.1

9.2 Geradengleichung autstellen

$$
\begin{aligned}
& \varphi(x)=\frac{\Delta \varphi}{\Delta x} \cdot x+\varphi(x=0)=\frac{4250 \mathrm{v}}{4 \mathrm{~cm}} \cdot x-750 \mathrm{~V} \\
& \underline{\varphi(x)}=0,31 \frac{\mathrm{kV}}{\mathrm{~cm}} \cdot x-0,75 \mathrm{kV} \\
& \varphi(x)=0 \Leftrightarrow 0,31 \frac{\mathrm{kV}}{\mathrm{~cm}} \cdot x-0,75 \mathrm{kV}=0 \Leftrightarrow x=\frac{0,75 \mathrm{kV}}{0,31 \mathrm{kv} / \mathrm{cm}}=2,4 \mathrm{~cm}
\end{aligned}
$$

9.3

$$
\text { Fosa. s. } 48
$$

$$
E=\frac{u_{12}}{s_{12}}=\frac{\varphi_{1}-\varphi_{2}}{s_{2}-s_{1}}=\frac{\varphi(0 \mathrm{~cm})-\varphi(4 \mathrm{~cm})}{4 \mathrm{~cm}-0 \mathrm{~cm}}=\frac{-750 \mathrm{~V}-500 \mathrm{~V}}{4 \mathrm{~cm}}=\underline{-0,31 \frac{\mathrm{LV}}{\mathrm{~cm}}}
$$

Beachte: $U\left(12=A_{(1)}\right.$ (2) weicht als einzige grope von der Index - Reihenfolge ab!

Nachvouziehen der Vorzcichen: (Benutze pos Probelad. Q) z, B. für $x=4 \mathrm{~cm}$ (rechle platte)
$\varphi(4 \mathrm{~cm})>0 \Rightarrow E_{\text {pot }}=\frac{\varphi(4 \mathrm{~cm})}{Q}>0 \Rightarrow$ techte Platte pos. gel.
\Rightarrow Fu auf pos Probeladung <0 (nach links)

$$
\Rightarrow E=\frac{F}{9}<0 \Rightarrow E=-0,31 \frac{\mathrm{kV}}{\mathrm{~cm}}=-31 \frac{\mathrm{kV}}{\mathrm{~m}}
$$

Merke: Zur positiven Feldladung gehōnt die größene Epot und damit das gröpere Potential φ
9.4

$$
\begin{aligned}
W_{12} & =-9 E\left(r_{2}-r_{1}\right)=-2.0 \cdot 10^{-9} \mathrm{C} \cdot\left(-0,31 \frac{\mathrm{kV}}{\mathrm{~cm}}\right) \cdot(3 \mathrm{~cm}-1 \mathrm{~cm}) \\
& =1,2_{(u)} \cdot 10^{-6} \mathrm{~J}>0
\end{aligned}
$$

(Pos. Ladung in Richtung pos. Peate verschoben $\Rightarrow \omega>0$)

